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Abstract

A closed numerical model of hydrodynamics and mass transfer of dispersed particles impurity in a turbulent two-
phase flow in vertical pipe is developed. Within the framework of two-equation model of turbulence (turbulent
energy—turbulent dissipation rate), particles deposition velocity, intensity of dispersed phase chaotic motion and
average velocity slip between dispersed and carrying phases are calculated. The theoretical results are compared with
the experimental data. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

This paper is devoted to developing the description
of hydrodynamics and mass transfer in a turbulent
two-phase flow in Eulerian variables. In the first part
of the work [1], the theoretical model of turbulent flow
with an impurity of particles of the spherical shape in
absence of particle—particle collisions was presented.
On the basis of the method of probability density func-
tion (PDF), a closed system of balance equations of
concentration, momentum and intensity of a chaotic
motion of the dispersed phase in nonhomogeneous
flow was presented. Taking into account the exchange
of impulse between colliding particles and surface and
particles absorption on the surface, boundary con-
ditions were obtained.

In this paper, we present results of careful testing of
the theoretical model [1] for a turbulent two-phase
flow in vertical pipes with regard to particles depo-
sition on walls. On the basis of two-equation (E—¢)
turbulence model used in engineering applications, a
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closed numerical model for calculation of hydrody-
namics and dispersed phase mass transfer in vertical
pipes is developed. The model calculations are com-
pared with experimental data and results of direct nu-
merical simulations obtained by other authors.

2. Balance equations of a two-phase flow in a pipe
2.1. Dispersed phase motion equations in a pipe

Stationary, fully-developed turbulent flow in a verti-
cal pipe is examined. The balance equation of the dis-
persed phase momentum in axial direction rewritten
from Part 1 [1] is
_ Ux + Vs - Vx

dVi 1 d
r dr +z‘a(’c<vxvr))—f (1)

In Eq. (1), we ignore the term proportional to pro-
duction of dispersed phase gradients of velocity and
concentration.

The second moment of particles velocity fluctuations
in Eq. (1) represents turbulent stresses in the dispersed
phase, arising as a result of particles involving in tur-
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Nomenclature

C, Cy, C., Cy dispersed phase concentration, mean
concentration, concentration on the
pipe axis and on the pipe wall

Vi, Vi components of averaged dispersed
phase velocity in axial and radial
directions (m s™!)

Cp drag coefficient for particles Vs particles sedimentation velocity due
Cu» Cel, €2, €3 constants for turbulence model to mass forces (m s’l)
dp particle diameter (m) Vg, Vp fluctuations of dispersed phase vel-
D, coefficient of turbulent diffusion of ocity in axial and radial directions
particles (m? s 1) (m s~
E mean turbulent energy of fluid y dimensionless coordinate normal to
phase (m?s™) the wall, 1 —r/R
f15 2 fm correction functions w modulus of relative velocity between
g particles response function continuous and dispersed phase (m
J particles deposition velocity (m s™') s7h
ka, k¢ coefficients of impulse restitution in
normal and axial directions Greek symbols
Lg Eulerian spatial macroscale (m) Y parameter associated with internal
particles response function turbulent structure, u7y/Lg
r radial coordinate (m) p ratio of Lagrangian and Eulerian
R radius of a pipe (m) time macroscales
Re flow Reynolds number, Un2R/v, Pe constant in the expression for turbu-
Re, particle Reynolds number, Wd, /v, lent time scale
Te, T}, Tw Eulerian time macroscales in the & turbulent dissipation rate (m2 )
hole flow, in the flow core and in Ve kinematics viscosity coefficient of
viscous sublayer (s) fluid (m? s7)
T Lagrangian time macroscale (s) b4 absorption coefficient
Un mean velocity of the flow (m s~ Pp> Pg particles and fluid densities (kg m ™)
Uy axial velocity of the flow (m s~ ') T particle dynamic relaxation time (s)
Uy, Uy velocity fluctuations in axial and
radial directions (m s~") Subscript
u amplitude of turbulent velocity of + denotes the dimensionless variables
fluid phase (m s™") in dynamic universal units
Vinig turbophoretic velocity (m s™')
bulent motion The equation for intensity of the dispersed phase tur-
bulent velocity in axial direction have the form [1]
T, 5 0V
(vxvr) = qluxue) — E(Vr ) ar (2) 5
. - | 20 L4 o) + o 2
The intensity of a chaotic motion of the dispersed dr~ rCdr or
phase in radial direction is calculated from the balance 2 5 5
equation [1] = ~(g(u3) = () 5)

div? 1 d 2
00 L L Gendy) = 2wy - 02) 3)

V
" odr rCdr T

(u?) is intensity of turbulent velocity fluctuations of a
carrying phase in ith direction.

The third correlation in Eq. (3) describes the turbu-
lent transfer of dispersed phase chaotic motion inten-
sity in radial direction [1]

d(v?)
dr

o)y = -1}

4)

The third turbulent velocity correlation in Eq. (5) rep-
resents the turbulent transfer of chaotic particles
motion in axial direction [1]

2
iv) = —z () —= (6)
The dynamic relaxation time of particles in Egs. (1)—
(6) depends on the relative averaged velocity between
dispersed and carrying phases



L.V. Derevich | Int. J. Heat Mass Transfer 43 (2000) 3725-3734 3727

C4pdy 1

T3 pg Ve ReyCp’

Rey = Wdy /vy, W=V —U|

24 0.5
Cp = R—gp(l +0.179Reb +0.013Re, )

Balance of the dispersed phase concentration in the
pipe cross-section is regulated by particles deposition
on the pipe wall and is described by the following
equations [1]

1d 5 dinC r
vV, = —Cr;a(r(vr )) — Dy~ = = 2JCn (7

1 I

2 R
Cn = e Jo dr rC(r)

where C,, is mean concentration of particles in the
pipe cross-section.

The radial component of average velocity of the dis-
persed phase in Eq. (7) is sum of the turbophoretic vel-
ocity (I), connected with nonhomogeneity of dispersed
phase turbulent energy, and diffusion velocity of par-
ticles, caused by a gradient of impurity concentration
(IT). The derivation of Eq. (7) is given in Appendix A.

The coefficient of particles turbulent diffusion in Eq.
(7) is associated with the chaotic motion of particles
and their random movement, together with the power-
ful turbulent eddies of the carrying phase [1]

Dy =t((v)) + g{u)) ®)

The particles response functions g, ¢ in Egs. (2), (3),
(5) and (8) depend on the contact time of particles
with powerful turbulent fluid eddies. These functions
are calculated in conformity with results of Derevich
[1].

The boundary conditions for balance equations (1),
(3), (5) and (7) were designed in [1] under the assump-
tion that the particles reflected from the wall have a
velocity lower than that before the collision. The axial
and radial velocities of particles before and after their
collisions against the wall were related to each other
by the coefficients of restitution k,, k.. Moreover, in
[1], the probability of particles absorption on the wall,
described by absorption coefficient y, was included. At
2 = 0, all particles touching the wall leave the flow; at
% = 1, the particles are not absorbed on the surface.

The system of boundary conditions for concen-
tration, averaged velocity and intensity of radial and
axial chaotic motion of dispersed phase on the pipe
wall (r = R) consists of the following relations [1]

B X 12
ﬂ(%b) —Vr} ~0 ©)

REFAV

B 1/2

1—;(k[<2 2) T, 5 0Vx

T, .\ —Vr X — T A 1
| 1+ xke n<vr> Vel Z(V') ar (10)

[ 2 1/2 2
o (Zen) —Vr}<v3>:—r<v,2>3(” (an

|1+ 7k}

_l—xklz(Z 2>1/2 W T 2E)(vxz)
T (G00) 0 [od =—30d=E a2

In the present study, we consider only the turbulent
effect of fluid on particles but we ignore modification
in the carrying phase turbulence due to the presence of
particles.

2.2. Turbulent fluid flow equations in a pipe

The conventional (E—¢) model, for example [2],
includes the following equations for the turbulent flow,
which are written for a stabilised flow:

1. Equation for axial velocity of the carrying phase

1oP 10 a Uy
+ ;E[r(vg_FV[)W] =0 (13)

pg Ox

where P is pressure in continuous phase.
Turbulent stress and turbulent viscosity in con-
tinuous phase are given by

Uy

=il e (14)

(uxtr) = —vy

2. Equation for the mean turbulent energy of the car-
rying phase

2
10 oE o Uy
;a[}’(\/g +V[)Wi| +V[( ar ) —=0 (15)

3. Equation for the mean turbulent energy dissipation
rate

10 I”V+Vl e
ror & ca)or

2
¢ (U €2
+VleLflE< ar ) _("52,](‘2E

=0 (16)

The correction functions fi, f> and f,, as well as the
constants ¢y, cc, ¢, ¢3 of the (E—¢) model equations,
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are taken from [2]. The Eulerian time macroscale of
turbulence in the flow core is determined from the re-
lation

Ty = PrE/c

where the constant f~0.22 [3].

Near the wall, the time scale of turbulence in dimen-
sionless variables is approximated with regard to the
macroscale of turbulent bursts in the viscous sublayer
[4]

TE+ = (Tg+)2+(Tw+)2’ TW‘*'zlo

where index “+” here and further marks dimension-
less parameters in universal dynamic variables.

The radial component of velocity fluctuation of the
carrying phase associates with turbulent viscosity

vi= )T (17

The spatial macroscale of turbulence can be deter-
mined using the Prandtl hypothesis

vi= Le(u))'"?

We approximate the intensity of carrying phase vel-
ocity fluctuations in axial direction as (u2)~1.3E.

On the pipe axis for Egs. (1), (3) and (5), Egs. (13),
(15) and (16) are used as conditions of symmetry. On
the pipe wall, the fluid phase is set to zero value for
the averaged velocity and for the turbulent energy, and
for a gradient of the turbulent dissipation rate.

3. Analytical expression for deposition velocity of
inertial particles

Here, we study a flow with dispersed impurity of
rather inertial particles, the time of dynamic relaxation
of which exceeds the time macroscale of turbulence
T > Tg. For sufficiently inertial particles, the profile of
turbulent particles energy is more flat across the pipe
section. But the turbulent particles diffusivity without
average velocity slip between phases weakly depends
on the particles inertia (as an example, see [6]). So, in
the equation for dispersed phase concentration, Eq.
(7), it is possible to neglect the turbophoretic velocity
of particles. Without taking into account the particles
energy gradient, the equation for dispersed phase con-
centration appears as

dac r
CVy==Dy - = 1 JCn (18)
Eq. (18) has the analytical solution for computation of
the distribution of concentration of the impurity on

the pipe cross-section and the rate of particles turbu-
lent deposition

C RJ° r2
12

Cm 1J°R 1—y(2 2)
— =1 - Jo=__4(Z

¢, Tap, 1+x(77:(vr)

12
Cy l—y(2 2)

—Jo™ | 2 4( =z 1
J JCm |:1_X(n(vr)

-1
1/2
1 R1—y/(2 2)
Y 2
+4Dp1—x<n(vr) (20)

where C,, is concentration on the pipe wall.

For inertial particles, t > Tg = the intensity of dis-
persed phase chaotic motion is expressed through tur-
bulent energy of carrying phase in radial direction in
accordance with the following relations [1,5]

Ti L
OO~ =, Te=—"7s. Lpg=aR,
f @1

(uf) zui
where u, is the dynamic (friction) velocity of the fluid
flow, and a=x0.14.

The coefficient of turbulent diffusion of particles is
approximated according to [6]

D,~bRu,, b~0.074 (22)

The following formulae are derived from Egs. (19)—
(22) to evaluate the concentration profile of the dis-
persed phase and the dimensionless particles deposition
rate:

1_ R 1/2
A= —X(r—*> , I'=2a/n

I+ \ 7+
-1
C A A 1‘2)]
a-(”ﬁ [”ﬂ(l‘ﬁ @3
A
= 24)

uy 1+ A/(@b)

The maximum deposition velocity is reached in Eq.
(24) for absorbing wall y =0 at 7, < aR, and its
value is equal to Jy =4b=x0.3. For particles with
small inertia, the dispersed phase concentration on the
absorbing wall decreases to zero.
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Fig. 1. Comparison between calculated results (lines) and experimental data (points) [4,7,8] for the radial profiles of turbulent r.m.s
velocity and amplitude of normal velocity fluctuation near the wall (a), and in the pipe cross-section (b).

4. Results and discussion

In the next simulations, we consider the fully devel-
oped turbulent two-phase flow in the vertical pipe. The
system of equations (13), (15) and (16) was numerically
integrated using a nonuniform grid, in which the mesh
is diminished as the tube wall is approached. Fig. 1(a,
b) illustrates the calculated results for the turbulent
energy and radial component of velocity fluctuations
of the continuous phase in the tube of diameter 2R =
5x 1072 m at the Reynolds number Re = 10* As
observed, the approximation (17) for the radial vel-
ocity fluctuations is in satisfactory agreement with the
experimental data [4,7,8].

The system of dispersed phase balance equations (1),
(3), (5) and (7), complemented by closing relations and
boundary conditions (9)—(12), was numerically solved
using a grid with nonuniform meshes along the pipe
radius. When the coordinates of mesh points in the
grids for calculating the continuous phase and the dis-
persed phase did not coincide, the parameters of the
continuous medium were approximated by a cubic
splain [9]. The meshes for low inertial particles (14 <
1) are diminished near the wall, so as to provide at
least 15 mesh points at a distance from the wall
yi~1ty. For particles with high value of dynamic
relaxation time (74 > R, ), the mesh points are located
more uniformly along the radius. The number of grid
points for both types of grids were chosen to be 80.
An increase in number of grid points did not lead to a
noticeable change in the calculated results.

The calculated results for the parameters of the
phase of low inertial particles (t4 < 1) are substan-
tially affected by the smoothness of the amplitude of
normal velocity fluctuations of the continuous phase
near the wall. In near-wall region (y; <10), the ampli-
tude of turbulent velocity fluctuations normal to the
surface was approximated by the analytical expression
[10]

W) = B[l —exp(—r+/4:)]", Bix08, A.~26

The turbulent particles deposition rate depends on the
magnitude of radial velocity fluctuations of the dis-
persed phase in the near-wall region. The amplitude of
the fluctuating velocity of particles close to the wall
has nonmonotonical dependence on their inertia
(Fig. 2). Particles with high relaxation times penetrate
into the near-wall region with a nonzero fluctuating
velocity. When particles dynamic relaxation time is
higher than the time macroscale of turbulence in the
flow core, this leads to a decrease in both the ampli-
tude and nonhomogeneity of the dispersed phase tur-
bulent energy over the whole cross-section. Fig. 3
shows the comparison between data obtained in the
frame of direct numerical simulations by Kallio and
Reeks [11] and our calculation results for radial fluctu-
ating velocity amplitude of particles normal to the
wall.

In the near-wall region, particles migrate in the
direction of lower amplitude level of dispersed phase

H—‘/A'/A
0 E== vl L

il
10" 10° 10! 10 103
Y+

Fig. 2. Radial profiles of the particles normal velocity fluctu-
ation amplitude with various relaxation times at the reflected
elastic wall. Points are experimental data [4]. Dashed lines are
amplitude of fluid velocity fluctuations, and solid lines are
particles velocity fluctuations amplitude.
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Fig. 3. Comparison between calculated results (lines) and data
[11] for normal velocity fluctuations of particles with various
relaxation times near the absorbing wall.

radial velocity fluctuation (turbophoresis). Fig. 4 pre-
sents, as an example, profiles of particles radial accel-
eration induced by gradient of turbulent energy in the
near-wall region

1d
A = -—

e= - (00D), Ay = ARju?

For comparison purposes in Fig. 4, the experimental
results of Young and Hanratty [12] are also shown. It
is seen that the acceleration of particles is directed to
the pipe wall, which increases with increase in Rey-
nolds number. A maximum of particles radial accelera-
tion is located close to the wall.

Fig. 5(a, b) presents distribution of the turbophor-
etic velocity Vg = 744, and dispersed phase con-
centration for absorbing (y = 0) and reflecting surfaces
(x = 1). The turbophoretic velocity is pointed at the
wall and nonmonotonically depends on dynamic relax-
ation time of particles (Fig. 5(a)). Increase in the relax-
ation time causes increase in the turbophoretic
velocity. However, for high inertial particles, the turbo-
phoretic velocity decreases, because the profile of dis-

Exp. data:

O Re=70800. t,=7.1
A Rel6400. 7,=0.54
m Re=72900. t.=17.6 [T
A Re=15700, 7,12
Calculations: i
=2, __ =10
1-Re=16.10%2 - 40.10°, 3 - 70.10°
1 1 1
50 100 150 200
Yi

Fig. 4. Particles radial acceleration near the wall. Lines are
results of calculation, and points are experimental data [12].

persed phase turbulent energy across the pipe becomes
more flat. For elastic surface (k, = 1), turbophoretic
velocity on the wall is equal to zero. The maximum
value for turbophoretic velocity is reached on the
inelastic surface (k, =0) or absorbing wall (y =0).
The turbulent migration of particles leads to an
increasing dispersed phase concentration on the
reflected surface (Fig. 5(b)). Particle deposition pro-
duces reduction of the dispersed phase concentration
on the absorbing surface in comparison with the
reflecting surface. Increasing the particles inertia, when
we obtain decreasing turbophoresis, leads to more uni-
form concentration profile. It should be noted that the
calculated results shown in Fig. 5(b) are in satisfactory
qualitative agreement with the direct numerical simu-
lations results [3,13].

Fig. 6 shows the comparison between calculation
results and experimental data of Liu and Agarwal [14]
for particles deposition velocity. The dependence of the
deposition velocity on dimensionless particles dynamic
relaxation times has a maximum value. For particles
with relaxation times t, <102, the universal growing
branch, associated with particles penetration into the
near-wall region, is realized. For particles with
dynamic relaxation times 7, > 103, the deposition vel-
ocity decreases because the amplitude of dispersed
phase fluctuations is diminished. Fig. 7 illustrates par-
ticles deposition rate at various absorption coefficients
7 (experimental results of Agarwal [15]). For larger
Reynolds number, the maximum value of the dispersed

1= T i
10 ¢ I -, =50,2-300, 3 - 1000

cre,

Fig. 5. Profiles of particles turbophoretic velocity (a) and dis-
persed phase concentration (b) at various properties of the
pipe surface. Solid lines for reflected and elastic surface
(x =1, kn = 1), dashed lines for reflected but inelastic surface
(=1, k, =0), points—dashed lines for absorbing surface
(x=0).
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Fig. 6. Comparison of simulation results (lines) for particles
deposition velocity with experimental data (points) [14]. (1)
Re =104, (2) 5 x 10*.

phase deposition velocity moves in the area of more
inertial particles. A similar conclusion follows from
our model prediction for experimental conditions of
Ganic and Mastanaiah [16] (Fig. 8).

Fig. 9 presents calculated particles concentration in
the pipe with absorbing wall and experimental data
from Hagivara and Sato [17]. The theoretical results
were obtained in the frame of “complete model” (nu-
merical calculations with the help of Egs. (1)—-(12) and
on the basis of analytical formula (23)).

Fig. 10 illustrates turbulent deposition rate of rather
inertial particles 7, >102. The particles deposition vel-
ocity was determined with the help of the complete
model and the analytical formula (24). The experimen-
tal data in Fig. 10 are collected in papers of Andreussi
[18], Lee and Hanratty [19], Lee et al. [20].

Fig. 11 shows the deposition velocity in universal
variables as a function of the dimensionless particles
relaxation times. The experimental data in Fig. 11 was
assembled in [15-17, 19-21]. For particles with
7, <102, the deposition rate weakly depends on

Exp. data: Agarwal (1975)
A Re=6.10°
O Re=5.10"

107 N

10! 102

1, 10°
Fig. 7. Influence of the absorption coefficient on the particles
deposition rate. Lines are calculated results, and points are ex-
perimental data [15]. (1) Re = 6 x 10%, (2) 5 x 10*.

Exp. data: Ganic & Mastanaiah, 1981 }_ <
O Re=94600 O 52500 A
Calculations: N
1 -Re = 94600, 2 - 52500
5 LZO'-"I'ZZQS
107 < 4
10° 10° T 10
+

Fig. 8. Particles deposition velocity at various flow Reynolds
number and absorption coefficients.

absorption coefficient. For inertial particles 7, > 103,
the Reynolds number and the coefficient of particles
absorption have notable influence on the intensity of
turbulent mass transfer. The dependence of particle de-
position velocity on restitution coefficient in the nor-
mal direction k, is insignificant.

Fig. 12 predicts turbulent deposition rate as a func-
tion of the flow Reynolds number. For the different
sizes of particles, both growing and falling branches of
deposition velocity can be realized. Flow Reynolds
number augmentation induces increase in the values of
dimensionless particles relaxation time. For particles
with dynamic relaxation time, at the starting Reynolds
number, Tyhny <1, we obtain intensification of dis-
persed phase mass transfer by increasing the Reynolds
number. If at the minimum flow Reynolds number the
particles relaxation times Tmi,4 > 10, then growth of the
Reynolds number reduces monotone deposition vel-
ocity. Fig. 12 also shows the experimental data from
Papavergos and Hedley [21].

Fig. 13 presents the dispersed phase averaged vel-
ocity profiles in the pipe cross-section without particle
absorption (y = 1). The experimental results in the

c/C,

02F ./ Exp. data: Hagiwara at al. 1979
/ R = 13.2 mm, Re = 8.10%, <, =200
0 1 1 1 1

0 02 04 06 08 1
y

Fig. 9. Dispersed phase concentration profile obtained by the
complete model (solid lines) and by the analytical formula
(23) (dashed lines).
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Calculations:
1-R,=3500,7=0
2-R,=1000,7=0.5
10-2 L !

10 10° 10*

Exp. data:
O Cousins & Hewit (1969) ¥  Farmer (1970)
A Andreussi (1983) O Lee, Hanratty & Adrian (1988)
<& Schadel (1988) B Lee (1984)

Fig. 10. Comparison between experimental data collected in
[18-20] and predictions obtained by the complete model (solid
lines) and by the analytical formula (24) (dashed lines).

figure belong to Lee and Durst [22]. Particles lose axial
momentum after their collisions with the pipe wall,
and this process determines the appreciable velocity
difference between continuos and dispersed phases
(Fig. 13(a)). Near the wall, dispersed phase velocity is
greater than fluid velocity, but in the core region, par-
ticles velocity is lesser than the carrying phase velocity.
Growth in the particles inertia and particles gravita-
tional settling velocity elevated the velocity slip
between phases.

The experiments manifest that amplitude of dis-
persed phase velocity fluctuations in axial direction is
much higher than in radial direction. This effect is a
result of the additional generation of the particles ran-
dom movement in the axial direction due to a gradient
of the dispersed phase average velocity. Illustration of
this effect is presented in Fig. 13(b, ¢).

10" v
Lot 88, o, 4]
10"k
]0-2 L
10-3 L
10-4 L Calculations: .
g 1-R,=300:2-10%3-210%
9 T =0,---- =05
10-‘ hoQ Q 4 - experimental data approximation [£4 ]
L r A L i

102 107 10° 10" 102 10° 10* 10° 10°
Lt
Fig. 11. Influence of Reynolds numbers and absorption coef-

ficients on particles deposition rate. Points are experimental
data accumulated in [15-17, 19-21].

Finally, we would like to note that dynamics of
large particles is determined not only by viscous fric-
tion force but also by Magnus lift force, arising as a
result of particles rotation around their center after
collisions with a surface. This problem is not examined
in the present paper.

5. Conclusions

On the basis of two-equation turbulence model, the
closed system of the balance equations for compu-
tation of hydrodynamics and dispersed phase mass
transfer in vertical pipes is developed. We investigated
the volumetric concentration of particles at which it is
reasonable to neglect particle—particle collisions.

The effects of particles relaxation time, turbulence
nonhomogeneity, coefficients of impulse restitution and
particles absorption on the particles chaotic motion
intensity, dispersed phase concentration distribution,
and averaged velocity slip between carrying and dis-
persed phase are examined.

Results of numerical modeling are summarized
below:

1. With increase in particles inertia, the particles pen-
etration in the near-wall region is realized. The
energy of the particles chaotic motion near the wall
exceeds the turbulent energy of the carrying phase.
With further growth in particles relaxation time, the
profile of the particles chaotic motion intensity is
reduced and becomes more flat over the cross-sec-
tion. The particles chaotic motion near the wall
causes particles deposition on the wall and loss of
the dispersed phase axial momentum.

2. The particles turbulent deposition velocity and pro-
file of particles concentration are controled by tur-

I,
107!
Exp. data:

) Papavergos & Hedley, 1984
10
107 F

o

10

10 ’ Re 10°

Fig. 12. Dependence of particles turbulent velocity deposition
on the fluid flow Reynolds numbers. Solid lines are complete
model predictions, and dashed lines are obtained by empirical
approximation [14].
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Fig. 13. Calculated results (lines) and experimental data (points) [22] for averaged axial dispersed phase velocity in the vertical pipe
(a). Predictions for velocity fluctuations of dispersed phase (solid lines) and fluid (dashed lines) in radial (b) and axial (c) directions.

Calculations were made at experimental conditions [22].

bophoretic velocity connected with gradient of the
particles turbulent energy, and particles diffusion as-
sociated with nonuniformity of the dispersed phase
concentration. For inertial particles, the role of tur-
bophoresis is reduced, which allows us to find ana-
lytical expressions for particles deposition velocity.
The intensity of turbulent mass transfer is strongly
determined by the coefficient of particles absorption
on the wall.

3. Amplitudes of the particles chaotic motion in axial
and radial directions significantly differ from each
other. Intensity of the particles chaotic motion in
axial direction is much higher than in radial direc-
tion due to extra generation of the particles turbu-
lence from the average velocity of the dispersed
phase.

Acknowledgements

This work was supported by the International
Science Foundation INTAS (Grant No. 94-4348) and

Russian  Foundation of Fundamental Science

Researches (Grant No. 98-01-00353).

Appendix A

Balance equations for concentration and radial vel-
ocity of dispersed phase in cylindrical coordinates are

1
7£(rCV,)+£CVX =0 (A1)
ror ax
oV, 120 U -V, D,olnC
Vi + ——(r(p})) = - (A2)
ar ror

T T or

The approximate presentation for radial velocity of
dispersed phase follows from Eq. (2) without convec-
tive term and U, =0

dIlnC

T (A9

T 9
Vv = - (7)) = Dy

After integrating Eq. (A1) over the pipe cross-section,
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we obtain
2 a
ey erw =~ Vx m>
RC 3X(C )
- (Ad)
(CV )= R L rCVy dr

where Vy, = Vi(R) is radial velocity at the pipe wall.
We define particles deposition rate as

Cw Viw=J Cm
Utilizing the approximation

B
ox

(CV)m =~ iCVx (AS)
0x

we derive from Egs. (Al) and (A4) the equation for
radial velocity of dispersed phase

10 2

The formula (7) for radial velocity of dispersed phase
is the solution of Egs. (A6) and (A3).
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