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Abstract

A closed numerical model of hydrodynamics and mass transfer of dispersed particles impurity in a turbulent two-
phase ¯ow in vertical pipe is developed. Within the framework of two-equation model of turbulence (turbulent
energy±turbulent dissipation rate), particles deposition velocity, intensity of dispersed phase chaotic motion and

average velocity slip between dispersed and carrying phases are calculated. The theoretical results are compared with
the experimental data. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

This paper is devoted to developing the description

of hydrodynamics and mass transfer in a turbulent

two-phase ¯ow in Eulerian variables. In the ®rst part

of the work [1], the theoretical model of turbulent ¯ow

with an impurity of particles of the spherical shape in

absence of particle±particle collisions was presented.

On the basis of the method of probability density func-

tion (PDF), a closed system of balance equations of

concentration, momentum and intensity of a chaotic

motion of the dispersed phase in nonhomogeneous

¯ow was presented. Taking into account the exchange

of impulse between colliding particles and surface and

particles absorption on the surface, boundary con-

ditions were obtained.

In this paper, we present results of careful testing of

the theoretical model [1] for a turbulent two-phase

¯ow in vertical pipes with regard to particles depo-

sition on walls. On the basis of two-equation �E±e�
turbulence model used in engineering applications, a

closed numerical model for calculation of hydrody-

namics and dispersed phase mass transfer in vertical
pipes is developed. The model calculations are com-
pared with experimental data and results of direct nu-
merical simulations obtained by other authors.

2. Balance equations of a two-phase ¯ow in a pipe

2.1. Dispersed phase motion equations in a pipe

Stationary, fully-developed turbulent ¯ow in a verti-
cal pipe is examined. The balance equation of the dis-
persed phase momentum in axial direction rewritten

from Part 1 [1] is

Vr
dVx

dr
� 1

rC

d

dr
�rChvxvri� � Ux � Vs ÿ Vx

t
�1�

In Eq. (1), we ignore the term proportional to pro-

duction of dispersed phase gradients of velocity and
concentration.
The second moment of particles velocity ¯uctuations

in Eq. (1) represents turbulent stresses in the dispersed
phase, arising as a result of particles involving in tur-
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bulent motion

hvxvri � qhuxuri ÿ t
2
hv 2r i

@Vx

@ r
�2�

The intensity of a chaotic motion of the dispersed
phase in radial direction is calculated from the balance

equation [1]

Vr

dhv 2r i
dr
� 1

rC

d

dr

ÿ
rChv3r i

� � 2

t

ÿ
qhu 2

r i ÿ hv 2r i
� �3�

hu 2
i i is intensity of turbulent velocity ¯uctuations of a

carrying phase in ith direction.
The third correlation in Eq. (3) describes the turbu-

lent transfer of dispersed phase chaotic motion inten-
sity in radial direction [1]

hv3r i � ÿ thv 2r i
dhv 2r i

dr
�4�

The equation for intensity of the dispersed phase tur-
bulent velocity in axial direction have the form [1]

Vr
dhv 2x i

dr
� 1

rC

d

dr

ÿ
rChv 2x vri

�� hvxvri@ hVxi
@ r

� 2

t

ÿ
qhu 2

x i ÿ hv 2x i
� �5�

The third turbulent velocity correlation in Eq. (5) rep-

resents the turbulent transfer of chaotic particles
motion in axial direction [1]

hv 2x vri � ÿ t
3
hv 2r i

@ hv 2x i
@r

�6�

The dynamic relaxation time of particles in Eqs. (1)±
(6) depends on the relative averaged velocity between
dispersed and carrying phases

Nomenclature

C, Cm, Cc, Cw dispersed phase concentration, mean
concentration, concentration on the
pipe axis and on the pipe wall

CD drag coe�cient for particles
cm, ce1, ce2, ce3 constants for turbulence model
dp particle diameter (m)

Dp coe�cient of turbulent di�usion of
particles (m2 sÿ1)

E mean turbulent energy of ¯uid

phase (m2 sÿ1)
f1, f2, fm correction functions
g particles response function
J particles deposition velocity (m sÿ1)
kn, kt coe�cients of impulse restitution in

normal and axial directions
LE Eulerian spatial macroscale (m)

q particles response function
r radial coordinate (m)
R radius of a pipe (m)

Re ¯ow Reynolds number, Um2R=ng

Rep particle Reynolds number, Wdp=ng

TE, T
o
E, TW Eulerian time macroscales in the

hole ¯ow, in the ¯ow core and in
viscous sublayer (s)

TL Lagrangian time macroscale (s)
Um mean velocity of the ¯ow (m sÿ1)
Ux axial velocity of the ¯ow (m sÿ1)
ux, ur velocity ¯uctuations in axial and

radial directions (m sÿ1)
u amplitude of turbulent velocity of

¯uid phase (m sÿ1)
Vmig turbophoretic velocity (m sÿ1)

Vx, Vr components of averaged dispersed
phase velocity in axial and radial
directions (m sÿ1)

Vs particles sedimentation velocity due
to mass forces (m sÿ1)

vx, vr ¯uctuations of dispersed phase vel-

ocity in axial and radial directions
(m sÿ1)

y dimensionless coordinate normal to

the wall, 1ÿ r=R
W modulus of relative velocity between

continuous and dispersed phase (m
sÿ1)

Greek symbols
g parameter associated with internal

turbulent structure, uTL=LE

b ratio of Lagrangian and Eulerian
time macroscales

bE constant in the expression for turbu-
lent time scale

e turbulent dissipation rate (m2 sÿ3)
ng kinematics viscosity coe�cient of

¯uid (m2 sÿ1)
w absorption coe�cient
rp, rg particles and ¯uid densities (kg mÿ3)
t particle dynamic relaxation time (s)

Subscript

+ denotes the dimensionless variables
in dynamic universal units
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t � 4

3

rs

rg

d 2
p

ng

1

RepCD

, Rep �Wdp=ng, W � jVÿUj

CD � 24

Rep

�
1� 0:179Re0:5p � 0:013Rep

�
Balance of the dispersed phase concentration in the

pipe cross-section is regulated by particles deposition
on the pipe wall and is described by the following
equations [1]

CVr � ÿCt1
r

d

dr

ÿ
rhv 2r i

�
|������������{z������������}

I

ÿ CDp
d ln C

dr|�������{z�������}
II

� r

R
JCm �7�

Cm � 2

R 2

�R
0

dr rC�r�

where Cm is mean concentration of particles in the

pipe cross-section.
The radial component of average velocity of the dis-

persed phase in Eq. (7) is sum of the turbophoretic vel-
ocity (I), connected with nonhomogeneity of dispersed

phase turbulent energy, and di�usion velocity of par-
ticles, caused by a gradient of impurity concentration
(II). The derivation of Eq. (7) is given in Appendix A.

The coe�cient of particles turbulent di�usion in Eq.
(7) is associated with the chaotic motion of particles
and their random movement, together with the power-

ful turbulent eddies of the carrying phase [1]

Dp � t
ÿhv 2r i � ghu 2

r i
� �8�

The particles response functions g, q in Eqs. (2), (3),

(5) and (8) depend on the contact time of particles
with powerful turbulent ¯uid eddies. These functions
are calculated in conformity with results of Derevich

[1].
The boundary conditions for balance equations (1),

(3), (5) and (7) were designed in [1] under the assump-

tion that the particles re¯ected from the wall have a
velocity lower than that before the collision. The axial
and radial velocities of particles before and after their
collisions against the wall were related to each other

by the coe�cients of restitution kn, kt: Moreover, in
[1], the probability of particles absorption on the wall,
described by absorption coe�cient w, was included. At

w � 0, all particles touching the wall leave the ¯ow; at
w � 1, the particles are not absorbed on the surface.
The system of boundary conditions for concen-

tration, averaged velocity and intensity of radial and
axial chaotic motion of dispersed phase on the pipe
wall �r � R� consists of the following relations [1]

"
1ÿ w
1� w

�
2

p
hv 2r i

�1=2

ÿVr

#
� 0 �9�

"
1ÿ wkt

1� wkt

�
2

p
hv 2r i

�1=2

ÿVr

#
Vx � ÿ t

2
hv 2r i

@Vx

@ r
�10�

"
1ÿ wk 2

n

1� wk 2
n

2

�
2

p
hv 2r i

�1=2

ÿVr

#
hv 2r i � ÿthv 2r i

@ hv 2r i
@r

�11�

"
1ÿ wk 2

t

1ÿ wk 2
t

�
2

p
hv 2r i

�1=2

ÿhVri
#
hv 2x i � ÿ

t
3
hv 2r i

@ hv 2x i
@ r

�12�

In the present study, we consider only the turbulent
e�ect of ¯uid on particles but we ignore modi®cation

in the carrying phase turbulence due to the presence of
particles.

2.2. Turbulent ¯uid ¯ow equations in a pipe

The conventional �E±E� model, for example [2],

includes the following equations for the turbulent ¯ow,
which are written for a stabilised ¯ow:

1. Equation for axial velocity of the carrying phase

ÿ 1

rg

@P

@x
� 1

r

@

@r

�
r�ng � nt �@Ux

@ r

�
� 0 �13�

where P is pressure in continuous phase.
Turbulent stress and turbulent viscosity in con-

tinuous phase are given by

huxuri � ÿnt

@Ux

@r
, nt � cm fmE

2=E �14�

2. Equation for the mean turbulent energy of the car-
rying phase

1

r

@

@ r

�
r�ng � nt �@E

@ r

�
� nt

�
@Ux

@ r

� 2

ÿE � 0 �15�

3. Equation for the mean turbulent energy dissipation

rate

1

r

@

@ r

�
r

�
ng � nt

cE3

�
@ E
@ r

�

� ntcE1f1
E
E

�
@Ux

@r

� 2

ÿcE2 f2 E
2

E

� 0 �16�

The correction functions f1, f2 and fm, as well as the
constants cm, cE1, cE2, cE3 of the �E±E� model equations,
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are taken from [2]. The Eulerian time macroscale of
turbulence in the ¯ow core is determined from the re-

lation

To
E � bEE=E

where the constant bE10:22 [3].
Near the wall, the time scale of turbulence in dimen-

sionless variables is approximated with regard to the
macroscale of turbulent bursts in the viscous sublayer
[4]

TE� �
����������������������������������ÿ
To

E�
� 2�ÿT

W�
� 2q
, T

W�110

where index ``+'' here and further marks dimension-
less parameters in universal dynamic variables.
The radial component of velocity ¯uctuation of the

carrying phase associates with turbulent viscosity

nt � hu 2
r iTE �17�

The spatial macroscale of turbulence can be deter-

mined using the Prandtl hypothesis

nt � LEhu 2
r i1=2

We approximate the intensity of carrying phase vel-
ocity ¯uctuations in axial direction as hu 2

x i11:3E:
On the pipe axis for Eqs. (1), (3) and (5), Eqs. (13),

(15) and (16) are used as conditions of symmetry. On
the pipe wall, the ¯uid phase is set to zero value for
the averaged velocity and for the turbulent energy, and
for a gradient of the turbulent dissipation rate.

3. Analytical expression for deposition velocity of

inertial particles

Here, we study a ¯ow with dispersed impurity of
rather inertial particles, the time of dynamic relaxation
of which exceeds the time macroscale of turbulence

t > TE: For su�ciently inertial particles, the pro®le of
turbulent particles energy is more ¯at across the pipe
section. But the turbulent particles di�usivity without

average velocity slip between phases weakly depends
on the particles inertia (as an example, see [6]). So, in
the equation for dispersed phase concentration, Eq.
(7), it is possible to neglect the turbophoretic velocity

of particles. Without taking into account the particles
energy gradient, the equation for dispersed phase con-
centration appears as

CVr � ÿDp
dC

dr
� r

R
JCm �18�

Eq. (18) has the analytical solution for computation of
the distribution of concentration of the impurity on

the pipe cross-section and the rate of particles turbu-
lent deposition

C

Cw

� 1� RJ o

2Dp

�
1ÿ r 2

R 2

�
�19�

Cm

Cw

� 1� 1

4

J oR

Dp

, J o � 1ÿ w
1� w

�
2

p
hv 2r i

�1=2

J � J o Cw

Cm

�
"
1ÿ w
1ÿ w

�
2

p
hv 2r i

�1=2
#"

1

� 1

4

R

Dp

1ÿ w
1ÿ w

�
2

p
hv 2r i

�1=2
#ÿ1

�20�

where Cw is concentration on the pipe wall.

For inertial particles, t > TE � the intensity of dis-
persed phase chaotic motion is expressed through tur-
bulent energy of carrying phase in radial direction in

accordance with the following relations [1,5]

hv 2r i1hu 2
r i
TE

t
, TE � LE

hu 2
r i1=2

, LE � aR,

hu 2
r i1u 2

�

�21�

where u� is the dynamic (friction) velocity of the ¯uid
¯ow, and a10:14:
The coe�cient of turbulent di�usion of particles is

approximated according to [6]

Dp1bRu�, b10:074 �22�

The following formulae are derived from Eqs. (19)±

(22) to evaluate the concentration pro®le of the dis-
persed phase and the dimensionless particles deposition
rate:

A � 1ÿ w
1� w

�
G
R�
t�

�1=2

, G � 2a=p

C

Cw

�
�
1� A

2b

�ÿ1�
1� A

2b

�
1ÿ r 2

R 2

��
�23�

J� � J

u�
� A

1� A=�4b� �24�

The maximum deposition velocity is reached in Eq.
(24) for absorbing wall w � 0 at t� � aR� and its

value is equal to J� � 4b10:3: For particles with
small inertia, the dispersed phase concentration on the
absorbing wall decreases to zero.
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4. Results and discussion

In the next simulations, we consider the fully devel-

oped turbulent two-phase ¯ow in the vertical pipe. The

system of equations (13), (15) and (16) was numerically

integrated using a nonuniform grid, in which the mesh

is diminished as the tube wall is approached. Fig. 1(a,

b) illustrates the calculated results for the turbulent

energy and radial component of velocity ¯uctuations

of the continuous phase in the tube of diameter 2R �
5� 10ÿ2 m at the Reynolds number Re � 104: As

observed, the approximation (17) for the radial vel-

ocity ¯uctuations is in satisfactory agreement with the

experimental data [4,7,8].

The system of dispersed phase balance equations (1),

(3), (5) and (7), complemented by closing relations and

boundary conditions (9)±(12), was numerically solved

using a grid with nonuniform meshes along the pipe

radius. When the coordinates of mesh points in the

grids for calculating the continuous phase and the dis-

persed phase did not coincide, the parameters of the

continuous medium were approximated by a cubic

splain [9]. The meshes for low inertial particles �t� <
1� are diminished near the wall, so as to provide at

least 15 mesh points at a distance from the wall

y�1t�: For particles with high value of dynamic

relaxation time �t�rR�), the mesh points are located

more uniformly along the radius. The number of grid

points for both types of grids were chosen to be 80.

An increase in number of grid points did not lead to a

noticeable change in the calculated results.

The calculated results for the parameters of the

phase of low inertial particles �t� � 1� are substan-

tially a�ected by the smoothness of the amplitude of

normal velocity ¯uctuations of the continuous phase

near the wall. In near-wall region �y�R10), the ampli-

tude of turbulent velocity ¯uctuations normal to the

surface was approximated by the analytical expression

[10]

hu 2
y�i � B�

�
1ÿ exp� ÿ y�=A��

� 2
, B�10:8, A�126

The turbulent particles deposition rate depends on the
magnitude of radial velocity ¯uctuations of the dis-

persed phase in the near-wall region. The amplitude of
the ¯uctuating velocity of particles close to the wall
has nonmonotonical dependence on their inertia

(Fig. 2). Particles with high relaxation times penetrate
into the near-wall region with a nonzero ¯uctuating
velocity. When particles dynamic relaxation time is

higher than the time macroscale of turbulence in the
¯ow core, this leads to a decrease in both the ampli-
tude and nonhomogeneity of the dispersed phase tur-
bulent energy over the whole cross-section. Fig. 3

shows the comparison between data obtained in the
frame of direct numerical simulations by Kallio and
Reeks [11] and our calculation results for radial ¯uctu-

ating velocity amplitude of particles normal to the
wall.
In the near-wall region, particles migrate in the

direction of lower amplitude level of dispersed phase

Fig. 1. Comparison between calculated results (lines) and experimental data (points) [4,7,8] for the radial pro®les of turbulent r.m.s

velocity and amplitude of normal velocity ¯uctuation near the wall (a), and in the pipe cross-section (b).

Fig. 2. Radial pro®les of the particles normal velocity ¯uctu-

ation amplitude with various relaxation times at the re¯ected

elastic wall. Points are experimental data [4]. Dashed lines are

amplitude of ¯uid velocity ¯uctuations, and solid lines are

particles velocity ¯uctuations amplitude.
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radial velocity ¯uctuation (turbophoresis). Fig. 4 pre-
sents, as an example, pro®les of particles radial accel-

eration induced by gradient of turbulent energy in the
near-wall region

Ar � 1

r

d

dr

ÿ
rhv 2r i

�
, Ar� � ArR=u

2
�

For comparison purposes in Fig. 4, the experimental

results of Young and Hanratty [12] are also shown. It
is seen that the acceleration of particles is directed to
the pipe wall, which increases with increase in Rey-
nolds number. A maximum of particles radial accelera-

tion is located close to the wall.
Fig. 5(a, b) presents distribution of the turbophor-

etic velocity Vmig� � t�Ar� and dispersed phase con-

centration for absorbing �w � 0� and re¯ecting surfaces
�w � 1). The turbophoretic velocity is pointed at the
wall and nonmonotonically depends on dynamic relax-

ation time of particles (Fig. 5(a)). Increase in the relax-
ation time causes increase in the turbophoretic
velocity. However, for high inertial particles, the turbo-

phoretic velocity decreases, because the pro®le of dis-

persed phase turbulent energy across the pipe becomes
more ¯at. For elastic surface �kn � 1), turbophoretic

velocity on the wall is equal to zero. The maximum
value for turbophoretic velocity is reached on the
inelastic surface �kn � 0� or absorbing wall �w � 0).

The turbulent migration of particles leads to an
increasing dispersed phase concentration on the
re¯ected surface (Fig. 5(b)). Particle deposition pro-

duces reduction of the dispersed phase concentration
on the absorbing surface in comparison with the
re¯ecting surface. Increasing the particles inertia, when

we obtain decreasing turbophoresis, leads to more uni-
form concentration pro®le. It should be noted that the
calculated results shown in Fig. 5(b) are in satisfactory
qualitative agreement with the direct numerical simu-

lations results [3,13].
Fig. 6 shows the comparison between calculation

results and experimental data of Liu and Agarwal [14]

for particles deposition velocity. The dependence of the
deposition velocity on dimensionless particles dynamic
relaxation times has a maximum value. For particles

with relaxation times t�R102, the universal growing
branch, associated with particles penetration into the
near-wall region, is realized. For particles with

dynamic relaxation times t� > 103, the deposition vel-
ocity decreases because the amplitude of dispersed
phase ¯uctuations is diminished. Fig. 7 illustrates par-
ticles deposition rate at various absorption coe�cients

w (experimental results of Agarwal [15]). For larger
Reynolds number, the maximum value of the dispersed

Fig. 3. Comparison between calculated results (lines) and data

[11] for normal velocity ¯uctuations of particles with various

relaxation times near the absorbing wall.

Fig. 4. Particles radial acceleration near the wall. Lines are

results of calculation, and points are experimental data [12].

Fig. 5. Pro®les of particles turbophoretic velocity (a) and dis-

persed phase concentration (b) at various properties of the

pipe surface. Solid lines for re¯ected and elastic surface

�w � 1, kn � 1), dashed lines for re¯ected but inelastic surface

�w � 1, kn � 0), points±dashed lines for absorbing surface

�w � 0).
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phase deposition velocity moves in the area of more
inertial particles. A similar conclusion follows from
our model prediction for experimental conditions of
Ganic and Mastanaiah [16] (Fig. 8).

Fig. 9 presents calculated particles concentration in
the pipe with absorbing wall and experimental data
from Hagivara and Sato [17]. The theoretical results

were obtained in the frame of ``complete model'' (nu-
merical calculations with the help of Eqs. (1)±(12) and
on the basis of analytical formula (23)).

Fig. 10 illustrates turbulent deposition rate of rather
inertial particles t�r102: The particles deposition vel-
ocity was determined with the help of the complete

model and the analytical formula (24). The experimen-
tal data in Fig. 10 are collected in papers of Andreussi
[18], Lee and Hanratty [19], Lee et al. [20].
Fig. 11 shows the deposition velocity in universal

variables as a function of the dimensionless particles
relaxation times. The experimental data in Fig. 11 was
assembled in [15±17, 19±21]. For particles with

t�R102, the deposition rate weakly depends on

absorption coe�cient. For inertial particles t� > 103,

the Reynolds number and the coe�cient of particles
absorption have notable in¯uence on the intensity of
turbulent mass transfer. The dependence of particle de-
position velocity on restitution coe�cient in the nor-

mal direction kn is insigni®cant.
Fig. 12 predicts turbulent deposition rate as a func-

tion of the ¯ow Reynolds number. For the di�erent

sizes of particles, both growing and falling branches of
deposition velocity can be realized. Flow Reynolds
number augmentation induces increase in the values of

dimensionless particles relaxation time. For particles
with dynamic relaxation time, at the starting Reynolds
number, tmin�R1, we obtain intensi®cation of dis-

persed phase mass transfer by increasing the Reynolds
number. If at the minimum ¯ow Reynolds number the
particles relaxation times tmin�r10, then growth of the
Reynolds number reduces monotone deposition vel-

ocity. Fig. 12 also shows the experimental data from
Papavergos and Hedley [21].
Fig. 13 presents the dispersed phase averaged vel-

ocity pro®les in the pipe cross-section without particle
absorption �w � 1). The experimental results in the

Fig. 6. Comparison of simulation results (lines) for particles

deposition velocity with experimental data (points) [14]. (1)

Re � 104, (2) 5� 104.

Fig. 7. In¯uence of the absorption coe�cient on the particles

deposition rate. Lines are calculated results, and points are ex-

perimental data [15]. (1) Re � 6� 103, (2) 5� 104.

Fig. 8. Particles deposition velocity at various ¯ow Reynolds

number and absorption coe�cients.

Fig. 9. Dispersed phase concentration pro®le obtained by the

complete model (solid lines) and by the analytical formula

(23) (dashed lines).
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®gure belong to Lee and Durst [22]. Particles lose axial

momentum after their collisions with the pipe wall,
and this process determines the appreciable velocity
di�erence between continuos and dispersed phases

(Fig. 13(a)). Near the wall, dispersed phase velocity is
greater than ¯uid velocity, but in the core region, par-
ticles velocity is lesser than the carrying phase velocity.

Growth in the particles inertia and particles gravita-
tional settling velocity elevated the velocity slip
between phases.
The experiments manifest that amplitude of dis-

persed phase velocity ¯uctuations in axial direction is
much higher than in radial direction. This e�ect is a
result of the additional generation of the particles ran-

dom movement in the axial direction due to a gradient
of the dispersed phase average velocity. Illustration of
this e�ect is presented in Fig. 13(b, c).

Finally, we would like to note that dynamics of
large particles is determined not only by viscous fric-

tion force but also by Magnus lift force, arising as a
result of particles rotation around their center after
collisions with a surface. This problem is not examined

in the present paper.

5. Conclusions

On the basis of two-equation turbulence model, the

closed system of the balance equations for compu-
tation of hydrodynamics and dispersed phase mass
transfer in vertical pipes is developed. We investigated
the volumetric concentration of particles at which it is

reasonable to neglect particle±particle collisions.
The e�ects of particles relaxation time, turbulence

nonhomogeneity, coe�cients of impulse restitution and

particles absorption on the particles chaotic motion
intensity, dispersed phase concentration distribution,
and averaged velocity slip between carrying and dis-

persed phase are examined.
Results of numerical modeling are summarized

below:

1. With increase in particles inertia, the particles pen-
etration in the near-wall region is realized. The
energy of the particles chaotic motion near the wall
exceeds the turbulent energy of the carrying phase.

With further growth in particles relaxation time, the
pro®le of the particles chaotic motion intensity is
reduced and becomes more ¯at over the cross-sec-

tion. The particles chaotic motion near the wall
causes particles deposition on the wall and loss of
the dispersed phase axial momentum.

2. The particles turbulent deposition velocity and pro-
®le of particles concentration are controled by tur-

Fig. 10. Comparison between experimental data collected in

[18±20] and predictions obtained by the complete model (solid

lines) and by the analytical formula (24) (dashed lines).

Fig. 11. In¯uence of Reynolds numbers and absorption coef-

®cients on particles deposition rate. Points are experimental

data accumulated in [15±17, 19±21].

Fig. 12. Dependence of particles turbulent velocity deposition

on the ¯uid ¯ow Reynolds numbers. Solid lines are complete

model predictions, and dashed lines are obtained by empirical

approximation [14].
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bophoretic velocity connected with gradient of the
particles turbulent energy, and particles di�usion as-

sociated with nonuniformity of the dispersed phase
concentration. For inertial particles, the role of tur-
bophoresis is reduced, which allows us to ®nd ana-

lytical expressions for particles deposition velocity.
The intensity of turbulent mass transfer is strongly
determined by the coe�cient of particles absorption

on the wall.
3. Amplitudes of the particles chaotic motion in axial

and radial directions signi®cantly di�er from each
other. Intensity of the particles chaotic motion in

axial direction is much higher than in radial direc-
tion due to extra generation of the particles turbu-
lence from the average velocity of the dispersed

phase.
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Appendix A

Balance equations for concentration and radial vel-
ocity of dispersed phase in cylindrical coordinates are

1

r

@

@ r
�rCVr � � @

@x
CVx � 0 �A1�

Vr
@Vr

@r
� 1

r

@

@r

ÿ
rhv 2r i

� � Ur ÿ Vr

t
ÿ Dp

t
@ ln C

@r
�A2�

The approximate presentation for radial velocity of

dispersed phase follows from Eq. (2) without convec-
tive term and Ur � 0

Vr1ÿ t
r

@

@r

ÿ
rhv 2r i

�ÿDp
@ ln C

@r
�A3�

After integrating Eq. (A1) over the pipe cross-section,

Fig. 13. Calculated results (lines) and experimental data (points) [22] for averaged axial dispersed phase velocity in the vertical pipe

(a). Predictions for velocity ¯uctuations of dispersed phase (solid lines) and ¯uid (dashed lines) in radial (b) and axial (c) directions.

Calculations were made at experimental conditions [22].
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we obtain

2

R
CwVrw � ÿ @

@x
�CVx �m,

�CVx �m�
2

R

�R
0

rCVx dr

�A4�

where Vrw � Vr�R� is radial velocity at the pipe wall.

We de®ne particles deposition rate as

CwVrw � JCm

Utilizing the approximation

@

@x
�CVx �m1 @

@x
CVx �A5�

we derive from Eqs. (A1) and (A4) the equation for
radial velocity of dispersed phase

1

r

@

@r
�rCVr � � 2

R
CmJ �A6�

The formula (7) for radial velocity of dispersed phase
is the solution of Eqs. (A6) and (A3).
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